
Tfieor Chim Acta (1993) 84:457-473 Theoretica
Chimica Acta
© Springer-Verlag 1993

Investigating the performance of parallel eigensolvers
for large processor counts

Richard J. Littlefield 1'* and Kristyn J. Maschhofl ~
1 Pacific Northwest Laboratory, Richland, WA 99352, USA
2 University of Washington, Seattle, WA, USA

Received October l, 1991/Accepted May 12, 1992

Summary. Eigensolving (diagonalizing) small dense matrices threatens to become
a bottleneck in the application of massively parallel computers to electronic struc-
ture methods. Because the computational cost of electronic structure methods typ-
ically scales as O(N 3) or worse, even teraflop computer systems with thousands of
processors will often confront problems with N ~ 10,000. At present, diagonalizing
an N x N matrix on P processors is not efficient when P is large compared to N.
The loss of efficiency can make diagonalization a bottleneck on a massively parallel
computer, even though it is typically a minor operation on conventional serial
machines. This situation motivates a search for both improved methods and identi-
fication of the computer characteristics that would be most productive to improve.

In this paper, we compare the performance of several parallel and serial
methods for solving dense real symmetric eigensystems on a distributed memory
message passing parallel computer. We focus on matrices of size N = 200 and
processor counts P = 1 to P = 512, with execution on the Intel Touchstone DELTA
computer. The best eigensolver method is found to depend on the number of
available processors. Of the methods tested, a recently developed Blocked Factored
Jacobi (BFJ) method is the slowest for small P, but the fastest for large P. Its speed
is a complicated non-monotonic function of the number of processors used. A
detailed performance analysis of the BFJ method shows that: (1) the factor most
responsible for limited speedup is communication startup cost; (2) with current
communication costs, the maximum achievable parallel speedup is modest (one
order of magnitude) compared to the best serial method; and (3) the fastest solution
is often achieved by using less than the maximum number of available processors.

Key words: Eigensolving - Massively parallel computers - Small dense matrices

1 Introduction

Many electronic structure methods require obtaining the eigenvalues and eigen-
vectors of a dense real symmetric N x N matrix, a process called eigensolving or

* Pacific Northwest Laboratory is operated for the U.S. Department of Energy (DOE) by Battelle
Memorial Institute under contract DE-AC06-76RLO 1830

458 R.J. Littlefield and K. J. Maschhoff

diagonalization. N , the number of basis functions, is typically a few hundred in
current applications.

On conventional computers, diagonalizing these dense matrices usually is not
a bottleneck. On such machines, the time required for eigensolving is O(N3). 1
Other parts of the calculation, such as constructing the matrix, can vary from
O(N 2) to O(N4), depending on the chemical system and electronic structure
method. However, the coefficient for those parts is large enough that eigensolv-
ing typically comprises a small fraction of the total computational cost.

Massively parallel computing threatens to change this situation. It is easy to
see how to apply large numbers of processors to such work as constructing the
matrix, which consists of many independent calculations. Indeed, it seems
plausible that the time-to-completion for those tasks could be held virtually
constant by simply increasing P in proportion to the amount of work. Unfortu-
nately, it is not so easy to apply large numbers of processors to eigensolving small
dense matrices. Most parallel eigensolver methods are limited to P ~< N and, as
shown later, can lose efficiency quickly even for much smaller P. Thus, if P is large
compared to N, eigensolving can become a bottleneck for a computation done in
parallel, even though it would not be for the same computation done serially.

This would be acceptable if P ~ N were expected to be the normal situation,
but this is not the case. Because total computational cost increases quickly, N
will be limited even for teraflop machines (1012 floating point operations per
second). At present, problems with N of a few hundred are often reserved for
computers rated at perhaps 108 operations per second. Assuming O(N 3) scaling,
this suggests that teraflop machines will often confront problems with
N < 10,000 (i.e., a factor of 10 4/3 larger). Much smaller N may occur for some
classes of problems. For example, hybrid molecular dynamics methods have been
proposed in which quantum methods would be used only for small critical
portions of the chemical system. Such methods might compute a long series of
time steps, limiting N to a few hundred in order to make the calculation feasible
even on a teraflop machine. There are supercomputer-class parallel systems with
more than 500 processors today, and teraflop computers with more than 10,000
processors surely will be available in a few years. Thus, it seems likely that P > N
will be a common case with massively parallel computers.

This situation motivates a search for parallel eigensolvers that can exploit
large numbers of processors to reduce time-to-completion. Although linear
speedup (proportional to P) would be desirable, the eigensolving bottleneck
sometimes can be avoided by more modest improvements. Suppose, for example,
that one attempts to apply 500 processors to a problem that is 99.5% perfectly
parallelizable work, plus 0.5% eigensolving. Then Amdahl's law:

T~eriat + Tparotle/
Speedup =

Tparallel
T~eriat + - -

P
implies that the speedup will be only 143 if the eigensolving is done serially. How-
ever, if the eigensolving were parallelized so as to run 10 times faster than the

1 We use "Big-O" order notation in the formal sense: a computation has cost O(f(N)) if and only
if there exists some constant c and some minimum problem size N o such that for all N > No,
cost(N) <~ c ' f (N). This notation gives some indication of how the cost varies with problem size, but
says nothing about absolute cost. The coefficients may very well be such that an O(N 2) algorithm is
faster than some O(N log N) algorithm for all N of practical interest

Parallel eigensolvers for large processor counts 459

serial version, then the overall speedup would increase to over 400• If more
processors were available, correspondingly higher speedup would be required
from the eigensolver to achieve the same gain.

In this paper, we explore some aspects of parallel eigensolvers in the regime
where P is slightly larger than N. The algorithms and codes that we consider are
all designed for a distributed memory MIMD (Multiple Instruction, Multiple
Data) computer programmed with explicit message passing. Our goals are to
determine how much the time-to-completion is reduced by parallel computation,
what factors limit that reduction, and which method(s) perform best under
various conditions. This study is not intended to be definitive, but rather to
support our long-term goal of developing improved methods to avoid the
eigensolver bottleneck.

The paper is organized as follows. Section 2 describes several approaches to
parallel eigensolving, laying groundwork for understanding the behavior shown
later. Section 3 discusses the results of empirical tests comparing the performance
of five serial and four parallel methods, over a range of matrix types and
processor counts. In these tests, a newly developed Blocked Factored Jacobi
(BFJ) method was the fastest method for large P. In Sect. 4, the BFJ method is
analyzed in detail using a theoretical performance model to determine what
factors limit its performance. Conclusions and suggested directions for further
work are found in Sect. 5. For completeness, the BFJ algorithm and performance
model are detailed in the Appendix.

2 Parallel eigensolver methods

Many numerical methods for solving dense real symmetric eigensystems are in
common use [5, 10], and most of them can be parallelized to some extent• We
will outline only the methods and parallelization strategies considered in this
paper•

Jacobi methods operate on the dense matrix using the Jacobi iteration:

A (k + l) r T a (k)r = V r A (o) Vk
- ~ O k X ~ o k

where Jk is a plane rotation matrix chosen to annihilate one off-diagonal element
of A (k). When performed in a series of sweeps addressing all N (N - 1)/2
off-diagonal elements, this iteration converges with the eigenvalues appearing
along the diagonal of A and the corresponding eigenvectors appearing as the
columns of V.

Due to the special form of J~, Jacobi methods can be distributed efficiently
by factoring A k into two matrices, one of which is grouped by columns and the
other by rows:

A (k + l) T 0 = V k A V k =

• ' ' r 1 . ' '

• . . r 2 • . .

• . . r n • . .

Y

G k = V 2 A °

Eil
v~

Using this factored form, the rotation to annihilate apq works only with data
contained in rows p and q of a matrix G k (which is conceptually V r A °) and

460 R.J. Littlefield and K. J. Maschhoff

columns p and q of V. To distribute the computation, disjoint groups of rows
and columns are assigned to several processors. Each processor does all rotations
for the data it owns, then the data are shuffled so as to bring new groups
together, and so on, until all the rotations in a sweep have been completed.
Essentially, a round-robin tournament is held, in which every unique (p, q) pair
is formed exactly once per sweep. There are several simple and efficient shuffling
scheme s that generate all of the required pairs in the minimum number of rounds
using only nearest neighbor communications on a ring topology [3, 4].

This basic algorithm, commonly called "one-sided Jacobi" [3], can be
extended to use a blocked decomposition of the matrix across multiple rings,
leading to the Blocked Factored Jacobi (BFJ) method outlined by Littlefield and
Maschhoff [8] and detailed in the Appendix of this paper. Blocking is required
to exploit P > N/2, but due to tradeoffs in load balance and communication
costs, blocking often turns out to be superior even when P is substantially less
than N/2 [8].

Compared to serial Jacobi methods, parallel Jacobi suffers mainly from
communication costs and a reduced ability to exploit skipped rotations. In a
serial Jacobi method, much work can be saved by skipping rotations for
off-diagonal elements that are already near zero. This typically increases the
number of iterations needed for convergence, but reduces the total computation
cost. In parallel Jacobi methods, skipping rotations does not reduce the time-to-
completion unless rotations can be skipped in all processors in the same step of
the ring transfer. As the processor count increases, this becomes increasingly
unlikely; in the limit of large P, the value of skipping rotations tends to zero.

Our tests included three Jacobi methods- two serial and one parallel. The
two serial methods are quite similar except for their eagerness to skip rotations.
The parallel method (BFJ) does not skip rotations at all, even with small P.

Most non-Jacobi methods start by reducing the dense matrix to tridiagonal
form using a sequence of Householder transformations, each of which zeroes one
column below the subdiagonal. This reduction does not parallelize perfectly.
Although each transformation can be applied to the remainder of the matrix in
parallel, the transformations must be determined in sequence and sent to all
processors. With large P, the reduction step potentially suffers from load
imbalance and high communication costs.

After tridiagonal form is obtained, there are several methods for extracting
eigenvalues and eigenvectors. One method, used by the EISPACK RSP routine,
is to use implicit-shift QL iteration to simultaneously find the eigenvalues and
eigenvectors. A simple approach to parallelizing this method, used by the codes
that we call PRS, is to duplicate the eigenvalue part of the computation on all
processors, while simultaneously computing only a few of the components of
each eigenvector on each processor. Because the eigenvalue part of the computa-
tion remains essentially serial, this approach results in only partial paralleliza-
tion. This does not affect the computational complexity, since the eigenvalue
computation is only O(N:), while the eigenvector computation is O(N 3) serial
but O(N 2) parallel. However, it may increase the absolute time-to-completion.

Another general approach is to find all the eigenvalues first, then use those
to compute the eigenvectors. In EISCUBE, eigenvalues are found by bisection
using the Sturm sequence, while eigenvectors are determined by perfect-shift QL
iteration; both steps are parallelized. Alternately, the eigenvalues may be found
by implicit QL iteration (which does not parallelize), or the eigenvectors by
inverse iteration (which does). The fastest serial solver that we tested (GIVEIS)

Parallel eigensolvers for large processor counts 461

uses implicit QL followed by inverse iteration. We do not yet have a parallel
method using inverse iteration. This is an obvious shortcoming of our current
tests, since the combination of bisection and inverse iteration has been found to
be the fastest method for solving symmetric tridiagonal matrices under some
circumstances [6, 7].

All of the non-Jacobi parallel methods that we tested are limited to P 4 iV,
giving a parallel cost of O(N2). In contrast, the BFJ method can exploit P > N,
and has an asymptotic parallel cost of O(N log 2 N) using cN2/log N processors.
(The optimum coefficient c depends on the ratio of computation and communi-
cation startup speeds.)

In the limit of very large N, and given as many processors as each method could
exploit, these cost orders indicate that the BFJ method would be faster. However,
Jacobi methods, including the BFJ method, are typically several times slower than
the competition on serial machines. To overcome this initial penalty, the BFJ
method would have to scale much better than the other parallel methods, and it
was not obvious a priori whether this would occur for problems of practical size.

3 Empirical results

To investigate some of the issues raised in the preceding discussion, we bench-
marked several eigensolvers, using a variety of matrix types and processor counts.
Table 1 outlines the solvers that we tested, and Figs. 1 and 2 show timings.

All of the solvers were coded in Fortran, except that PRS v.0 and PRS v.1
were coded in C. All used either naive Fortran BLAS 2 or the equivalent inline

"10
c-
O
0

E

100 I

50

20

10

5

2

1

O O
(~ X X +

+ +
+

V V V V V

[3 D 0 [] []

8 X X X X
O © O

©
I I I I I

Algorithm
O BFJ (P=I)
× NR Jacobi
+ GAMESS Jacobi
¢ EISCUBE (P=I)
V EISPACK RSP
A PRSv.1 (P=t)
[] GIVEIS

EISCUBE (optimum P)
A PRS v.1 (optimum P)
~) BFJ (optimum P)

Matrix Type
1 Uniform Random (UR)
2 UR, diag.dom, by 10^3
3 UR, diag.dom, by 10^6
4 Nesbet, gamma=.01
5 Nesbet, gamma=.001

1 2 3 4 5

Matrix type code

Fig. I. Execution time for solving a 200 x 200 matrix on the Intel Touchstone D E L T A computer,
using either P = 1 or the P that produced the shortest time for a particular solver

2 Basic Linear Algebra Subroutines, obtained from netlib@ornl.gov

462 R.J. Littlefield and K. J. Maschhoff

50

20

8 10
g

s

u BFJ]
" s . , . . zx EISCUBE /

o PRSll J . +

i i h i I i i l l i i i i t

1 2 4 6 8 12 34 50 100 200 400

Processors Used

Fig. 2. Execution time for
solving a 200 x 200 matrix,
diagonally dominant by 103
("Type 2"), as a function of
the number of processors used

Table 1. Solvers tested in this study

Name Parallel (P) Source; Description
or serial (S)

BFJ P
NR Jacobi S
GAMESS Jacobi S

EISCUBE P

RSP S

PRS v.0 P

PRS v. 1 P

GIVEIS S

Written at PNL; Blocked Factored Jacobi.
Numerical Recipes [10]; conventional Jacobi.
Extracted from the GAMESS-UK program;
conventional Jacobi with aggressive skipping of
rotations.
Supplied by Intel, modified for portability;
reduction, bisection, perfect-shift QL, all parallelized.
EISPACK (netlib); reduction, implicit-shift QL
for eigenvalues and vectors simultaneously.
See acknowledgements; parallel reduction, serial
implicit-shift QL for eigenvalues, with parallel
construction of eigenvectors.
See acknowledgements; same basic method as
PRS v.0, see text for differences.
Extracted from the TURBOMOLE program;
reduction, implicit-shift QL for eigenvalues, inverse
iteration for vectors.

code. All communica t ions were done using synchronous message passing primi-
tives (send/receive) provided by the operat ing system. Except for PRS v.0 (see
below), all global communicat ions were done using a binary tree strategy with
cost O(log P). Convergence criteria were set so that all solvers produced similar
accuracy. All o f the parallel solvers terminate with their results distributed in
some fashion, and the reported times do not include any reorganizing of the
results. (Such reorganizat ion would require only a small fraction o f the eigen-
solving time. We omitted it to avoid dealing with application-specific details.)
Because o f these uniform conditions, we believe that the timing results are
comparable between codes.

Two fundamental ly different types of matrices were used for testing. The
first type was constructed of uniform (0, 1) r andom numbers, then made
diagonally dominant by dividing the off-diagonal elements by an appropriate
constant (1, 103, 106). The second type was constructed o f full-bandwidth Nesbet

ParalM eigensolvers for large processor counts 463

matrices, 3 with the 7 parameter set to either 0.01 or 0.001. Both methods generate
matrices whose eigenvalues are almost always well separated.

Testing was done on the Intel Touchstone DELTA 4 computer [2]. The
DELTA computer consists of 520 nodes, each containing an i860 processor chip
and 16 megabytes of memory. The processors are interconnected with cut-through
routing on a 2-D mesh. The DELTA differs from an Intel iPSC/860 T M [1]
primarily in having more processors and higher node-node bandwidth. (Absolute
performance numbers are discussed in Sect. 4.)

PRS v.0 and PRS v. 1 require more explanation than appears in Table 1. These
codes are based on a partial parallelization of the EISPACK RSP method, as
outlined in the previous section: parallel reduction, serial solution for eigenvalues,
and parallel accumulation of vectors. There are two important differences between
these codes. First, v.0 implements global communications using a simple one-to-
many serial scheme, while v. 1 uses a more sophisticated binary tree approach.
Second, v.1 uses external BLAS, while v.0 uses inline code.

Results are shown in Figs. 1 and 2. All of the results shown were done with
N = 200. This value is typical of current problems, and is small enough to allow
P modestly greater than N. Parallel codes were tested with a variety of processor
counts, P = 1 to P = 400.

Figure 1 summarizes all the performance test results. It displays times for the
serial solvers, plus times for parallel solvers at P = 1 and at whatever "opt imum"
P produced the minimum execution time. Several interesting features are appar-
ent:

• BFJ is the fastest parallel solver for most matrix types, but is always the slowest
serial one.

• All of the parallel solvers are faster than any serial solver, but none of the
parallel solvers is more than 10 times faster than the best serial one (GIVEIS).

• All of the Jacobi methods improve in proportion to the degree of diagonal
dominance. In the remainder of this paper, we focus on "type 2" matrices
(diagonally dominant by a factor of 103), as representative of what might be
found in practice in highly iterative applications, where good eigenvector
approximations are available to use for preconditioning the matrix.

Figure 2 shows the speedup curves for the parallel solvers. Again, several
interesting features are apparent:

• PRS v.0 scales well out to about 12 processors, then begins to suffer from its
O(P) serial broadcast scheme. Beyond 14 processors, PRS v.0 gets dramatically
slower.

• PRS v.1 and EISCUBE, which use O(log P) global operations, do not suffer
much beyond 50 processors. However, they too achieve their minima at around
P = 50, and get slightly slower after that.

• BFJ improves out to P = 400, crossing under the EISCUBE and PRS v.1 curves
at slightly over P = 50. (Beyond P = 400, BFJ would turn up also; see Sect. 4.)

3 M~ - 1 + 7(2i -- 1)a(i,j)
4 Intel Supercomputer Systems Division, Intel Corporation, Beaverton, Oregon. The Touchstone
D E L T A computer is a result of specially directed efforts in support of the Concurrent Supercomput-
ing Consort ium, and is not marketed by Intel. "r~a Intel Corporation

464 R.J. Littlefield and K. J. Maschhoff

It has long been conjectured that Jacobi methods might be faster than other
methods for sufficiently large processor counts [3]. The data reported here
provide the first empirical support for that position, suggesting that the BFJ
method is in fact a competitive algorithm when, for example, P > N/4 and N is
relatively small.

This conclusion must be tempered, however, by the observation that we have
not yet attempted to adapt the non-Jacobi methods for the large-P regime. In the
case of Jacobi methods, detailed performance modeling led directly to the
creation of the BFJ method, making it possible to exploit P > N/2 processors.
The same effort also provided a method for optimizing BFJ's use of available
processors, producing an average 30% performance improvement in some useful
regimes [8]. We are hopeful that further study of the non-Jacobi methods will
yield similar benefits, and it would not be surprising for the BFJ method to be
overtaken by an improved non-Jacobi method. At present, both EISCUBE and
PRS v.1 take slightly more time to reduce the matrix to tridiagonal form than
BFJ does to completely solve the system. However, there are several potential
improvements in the reduction that we have yet to evaluate.

Several other points are more clear:

• As shown in Fig. 1, the parallel speedup of small dense eigensolvers will be
modest for matrices of this size, unless there are changes in the methods and/or
computer systems. This point is investigated further in the next section.

• As shown by PRS v.0 and PRS v. 1 in Fig. 2, performance with large P cannot
be predicted solely from performance with small P. The nature of the underlying
algorithm must be considered, and an appropriate performance model used.

• As shown by the behavior of the BFJ method, the large-P and small-P regimes
should be considered separately- different algorithms may be preferred in
each regime.

4 Performance analysis of the BFJ method

In the previous section, we showed empirically that the BFJ method is competi-
tive with other methods in the large-P regime. We now use a detailed perfor-
mance model of BFJ to address several questions:

1. What floating point and communication speeds is the BJF method actually
getting out of the current computer?

2. What limits the performance of the BFJ method?

3. How fast could the BFJ method run, given an unlimited number of processors
with some specified characteristics?

Note that the answers we get, strictly speaking, will apply only to the
particular implementation of the BFJ method that we analyze. There is no
guarantee that the bottlenecks for the BFJ method are the same as those for PRS
v.1. Nonetheless, we hope that a detailed analysis of one eigensolver will yield
some valuable insight about parallel computing, as well as providing a model for
analyzing other methods.

The BFJ algorithm and a performance model for it are described in detail in
the Appendix. Briefly, the BJF method distributes rows and columns of two

Parallel eigensolvers for large processor counts 465

§

I-

1

f p F

10 20 26 34 50 1 O0

Processors Used

Fig. 3. Predicted and observed
execution time for solving a
200 x 200 "Type 2" matrix
using the BFJ method, as a
function of the number of
processors used

matrices across a ring of processors (multiple rings, in general), then alternately
operates on local data and scrolls the data around the ring. This algorithm
exhibits "stairstep" speedup (see Fig. 3) because its execution time is largely
proportional to both the ring length and the maximum number of matrix rows
and column assigned to any processor. Adding processors (increasing the ring
length) actually makes the algorithm run slower, until enough processors have
been added to reduce the amount of data in each one. Thus the BJF method
should be run only with processor counts at the bot tom of a step. (The processor
counts in Fig. 1 were chosen by this rule to avoid stairstep artifacts.)

The performance of the BFJ method can be modeled well by assuming that
computat ion and communication happen in lockstep, and then calculating the
time consumed by the busiest processor at each step. This process yields a
closed-form analytic expression for the execution time in terms of six parameters
that are closely tied to basic machine speeds, application code design, and
compiler quality:

1. Foverhead is the fixed computational cost for a single annihilation, expressed as
an equivalent number of floating point operations. This cost includes subroutine
entry/exit, computing the rotation angle, and so on.

2. t~op is the floating point operation time (as measured for the per-element
operations of the BLAS functions).

3. txstartup is the transfer startup time.

4. txperetem is the transfer time per element.

5. tc~.,ar,,p is the combine startup time (to "combine" means to sum values across
several processors).

6. t~e~e~m is the combine time per element.

These parameters can be measured fairly easily with testjig programs, and
their accuracy can be checked by comparing predicted performance with that
measured for the eigensolver. 5 For the DELTA, we measured the following

5 Significant discrepancies indicate that either the model is incorrect or that the testjig and actual
codes are somehow behaving differently. In early testing, we found factor of 5 discrepancy in one
parameter (txs,ar,,p). This discrepancy was traced to an anomaly in the message-passing primitives. A
workaround was developed, and the computer development team was notified.

466 R.J. Littlefield and K. J. Maschhoff

values:

t~op 0.122 #sec (8.2 MFLOPS)

tx~tartup 153 #sec

txperelem 1.66/~sec (4.8 MB/sec/link = 0.6 MB/sec/node)

tcsta~tup 210 #sec

tcperelem 2.78/~sec

foverhead 265

Figure 3 shows that using these parameter values in the performance model
predicts the behavior of the BFJ method quite closely. Since this accuracy results
from analyzing the algorithm, rather than from coincidentally fitting some
standard function, we can be fairly confident about interpreting the numbers.

Each of the parameter values implies something about how well the BFJ
method is using the machine. First, 8.2 MFLOPS for the BLAS calculations
suggests that the Fortran compiler has done a fairly good job in this case - the
BFJ method can use only Level 1 BLAS (vector-vector) and tends to overflow
cache memory. For the computations done by the BFJ method, this is a
situation in which the i860 would be hard-pressed to exceed 18 MFLOPS
because of memory bottlenecks [9]. Second, a transfer startup time of 153 #sec
suggests that only small improvements in startup time could be achieved by
recoding the application - the best time to date by an optimized testjig code for
a similar type of transfer is around l l0#sec. Third, the 9.6 MB/sec/node
indicates that we are using the communication links reasonably efficiently- at
the time these benchmarks were run, optimized testjig codes could achieve only
slightly over 12 MB/sec/node. Fourth, the computational overhead cost of 265
indicates that the i860 handles straight-line code, subroutine calls, divide, and/
or sqrt functions relatively less efficiently than other machines that we have
tested. For example, the equivalent computational overhead cost for an
NCUBE/ten TM6 computer was only 48. This is not surprising since (1) the i860
architecture and compilers tend to reward loops that can be pipelined, and (2)
the i860 computes sqrt in software, while the NCUBE does it with hardware.
However, it is important to be aware of these differences- at one point, an
inappropriate choice of compiler switches 7 caused the computational overhead
cost to increase to 797 and significantly changed the relative performance of
EISCUBE, PRS, and EISPACK RSP.

There are two ways to address the question of which characteristic limits the
performance of the BFJ method. Viewed in isolation, the performance model
says that execution time is a linear function of each parameter. Thus, it is
tempting to look at the marginal effects, that is, ~Time/~Parameteri.

In the broader view, however, the performance of the BFJ method is actually
a nonlinear function of the parameters because the algorithm allows more
processors to be exploited, or the same number of processors to be used in

6 XM NCUBE/ten is a trademark of NCUBE, Beaverton, Oregon
7 We omitted the -Knoieee flag, an oversight that caused the i860 to work very hard preserving the
last two bits in a 64-bit number for divide and sqrt

Parallel eigensolvers for large processor counts

Table 2. Predicted effect of improving each performance parameter

467

Improvement

t~startup txperelem foverhead Optimum P Relative time

400 1.00
2X 400 0.98

2X 400 0.89
2X 2X 400 0.87

2X 800 0.65
2X 2X 800 0.63
2X 2X 800 0.58
2X 2X 2X 800 0.56

10X 2X 2X 2900 0.20

different ways, depending on the relative values of various parameters. For
example, as startup cost drops, it may be productive to add more rings, or to
shift f rom one long ring to several short ones. Because of these nonlinear effects,
it is more meaningful to hypothesize substantial changes in the parameters and
look at the performance that could be achieved after re-optimizing the number
and usage of processors.

Table 2 shows the predicted effect of improving three of the performance
parameters and assuming that an unlimited number of processors is available.
(We have left t~qop fixed, since it establishes the single-processor speed against
which comparisons should be done.) The information in this Table reveals that:

• Communicat ion startup time is the most important parameter.

• Reducing communication startup time would allow exploiting more processors.

• Given the current communication startup time, the opt imum number of
processors is only P = 400 (for a 200 x 200 matrix). Even if more processors
were available, attempting to use larger P would make BFJ run slower.

From one perspective, these are disappointing results, since little improve-
ment can be made in the startup time by modifying the BFJ method at the
application program level. However, the observed startup time is two orders of
magnitude larger than the hardware latency, indicating that most of the time is
due to software processing. We are hopeful that significant improvements might
be accomplished by changes in the computer operating system, and we are
pursuing this possibility with the vendor.

5 Conclusions

The most important points from this work are that:

• P > N is expected to be a common case for electronic structure calculations on
massively parallel computers.

• Eigensolving is more likely to be a bottleneck with massively parallel comput-
ers than with serial or modestly parallel computers, where P ~ N.

468 R.J. Littlefield and K. J. Maschhoff

• The m a x i m u m speedup for solving small dense eigensystems is modes t at
present (a b o u t 10 t imes for N = 200 in our tests). M a x i m u m speedup depends
on the relat ive speeds o f communica t i on and computa t ion .

• Every me thod in our tests ran the fastest using less than the m a x i m u m
avai lable number o f processors .

• Different a lgor i thms m a y be required for large-scale para l le l i sm (e.g., P ~ N or
larger) than with modes t para l le l i sm (P ~ N) - the fastest paral le l solver in our
tests (BFJ) is also the slowest serial method .

• C o m m u n i c a t i o n s ta r tup is the single mos t i m p o r t a n t l imit ing fac tor for the
BFJ method .

The current results are not sufficient to conclude which me thods will ulti-
mate ly prove best. F u r t h e r s tudy is required to de termine why the non-Jacob i
me thods do not scale well into the massively para l le l regime, and what can be
done to improve their per formance . M o r e prac t ica l experience will also be
required to de termine the pe r fo rmance impacts o f such issues as solving for only
some o f the eigenvectors and main ta in ing high accuracy and o r thogona l i ty in the
presence of degenera te eigenvalues.

Acknowledgements. This research was supported by the U.S. Department of Energy (DOE). Access
to the Intel Touchstone DELTA System of the Concurrent Supercomputing Consortium was
provided by the DOE. The PRS v.0 and v.1 codes were provided by Shirish Chinchalkar at
Cornell, who developed them for applications in which P ~ N, but graciously allowed us to test
them in a much different regime. We thank our colleagues, especially Dr. M. W. Feyereisen, Dr. R.
A. Kendall, and Dr. M, A. Thompson, and an anonymous referee, for valuable discussions and
reviews.

References

1. Intel Corp (1990) iPSC/2 and iPSC/860 User's Guide. Intel, Beaverton, Oregon
2. Intel Corp (1991) A Touchstone DELTA System Description. Intel Supercomputer Systems

Division, Beaverton, Oregon
3. Eberlein PJ (1987) On using the Jacobi method on the hypercube. In: Proc Second Conf on

Hypercube Multiprocessors, p 605-611
4. Eggers WS (1988) On parallel computation using one-sided jacobi method. MS Thesis, SUNY/

Buffalo, June 1988
5. Golub G, Van Loan C (1989) Matrix computations, 2rid ed. Johns Hopkins Press, Baltimore,

Maryland
6. Ipsen ICF, Jessup ER (1990) Solving the symmetric tridiagonal eigenvalue problem on the

hypercube. SIAM J Sci Stat Comput 11(2):203-229, March 1990
7. Jessup ER (1989) Parallel solution of the symmetric tridiagonal eigenproblem. Technical

Report YALEU/DCS/RR-728, Yale Univ, October 1989
8. Littlefield RJ, Maschhoff KJ (1991) Choosing processor array configuration by performance

modeling for a highly parallel linear algebra algorithm. In: Proc Sixth Distributed Memory
Computing Conference, p 600 605

9. Moyer SA (1991) Performance of the iPSC/860 node architecture. Technical Report IPC-TR-
91-007, Univ of Virginia, May 1991

10. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1986) Numerical recipes The art of
scientific computing. Cambridge Univ Press

Para l le l e igensolvers for l a rge p r o c e s s o r c o u n t s

Appendix: BFJ algorithm and timing model

469

A I BFJ algorithm

The BFJ method, like other "one-sided" Jacobi eigensolvers, is based on the
same mathematics as the classic Jacobi method, namely:

A(K+ 1) _ rrn(k)r v r n (0) v - -OkZX a k ~ r k . ~ a v k

The classic method stores and updates the A matrix to obtain eigenvalues.
The V matrix is stored and updated only if eigenvectors are required. In contrast,
the BFJ method stores and updates a new matrix G defined as G k= vTa(0) - - k -'1 , SO

that A k = GkVk. The V matrix is always stored and updated. When they are
needed to compute rotations, elements of A are reconstructed via dot-products of
individual rows of G and columns of V.

Ignoring parallelism and distribution of data, the BFJ algorithm for a real
symmetric matrix can be outlined as follows:

Algorithm I (Non-distributed BFJ)
~> Initialize G = A and V = I (n × n identity matrix)
E> Loop until convergence

D For each off-diagonal element pq, annihilate A m as follows:
/* Reconstruct elements of A needed to determine the rotation */

a p q = G p * * V . q ~ 2 n = l a p i V i q
app = Gp . v

aqq = Gq. • V,q
/* Compute rotation angle */

0 = (aqq -- avp)/(2apq)
t = sgn(0)/(~0[+ sqrt(02+ 1))
c = 1/sqrt(t2+ 1)
s = l c

/* Rotate rows of G and columns of V */
T=Gp.
Gp. = cT -- sGq,
Gq. = s T + CGq,
T= V,p
V,p = eT - s V . q

Vq = sT + c V , q

End "for each off-diagonal element pq"
- End "loop until convergence"

The algorithm terminates with V being a matrix whose columns are eigenvectors.
The corresponding eigenvalues can be retrieved as ei = Gi. ° V.e.

Convergence is tested by examining the magnitude of the off-diagonal
elements. For the work reported here, we used simply max(lapq I) < 10-14 (before
rotation). The development of a convergence test that is both efficient and
accurate under all circumstances is beyond the scope of this paper. However, it
is important to note that one-sided eigensolvers, including BFJ, are qualitatively
different from the classic Jacobi method with respect to convergence. In the
classic Jacobi method, the A matrix is stored explicitly and the off-diagonals can
be driven arbitrarily close to zero by continued iteration. In one-sided methods,
the off-diagonals are computed as dot-products, so that floating point roundoff
errors bound their magnitude away from zero.

470 R.J . Littlefield and K. J. Maschhoff

Ring Position 1 2 3

Even transfe?"~ ~ i ~ : ' t ; ~ ~]LJ ' ' ' " ~ J ~ ' A l l other
at designated Transfer #2 Transfer #4 transfers
ring position

Fig. 4. Scrolling pattern for 3 processors
organized in 1 ring. Each vertical line
represents a unit consisting of a row of
G and the corresponding column of V.
Each processor holds 2 groups of units,
called "Group I" and "Group II". In
this example, N = 15; there are 3 groups
containing 3 units and 3 groups con-
taining 2 units

1
2

Group 3
Number 4

5
6

Ring Number Group Number
1 2 3 4 1 2 3 4 5 6

G=vTA V

1

2 Fig. 5. Matrix distribution for 12 processors
3 organized in 4 rings of 3 processors each.

Each unit is spread across 4 processors at
4 whatever ring position holds its group

Transfers of
matrix blocks

I I ~ I ~ Completion Fig. 6. Communication pattern
~ and sharing of for 12 processors organized in

dot-products 4 rings

Many refinements are possible in this algorithm, such as avoiding the dot-
products for app and aqq by explicitly storing and updating the diagonals, or
reducing the operation count by using "fast rotations" to update G and V.
However, the code that was tested for this paper, and the performance model
described below, did not incorporate such refinements.

To parallelize the BFJ computation, the G and V matrices are distributed
such that each processor holds Gp~ and V~p for at least two different p 's and a
range of i's. Inner loops are then added to process all off-diagonal elements by
scrolling the data around a ring of PR processors. The data distribution and
scrolling are illustrated in Figs. 4, 5, and 6. Then each processor executes a
program outlined as follows:

Algorithm 2 (Distributed BFJ)
E> Initialize Gpi and Vip for all i and p assigned to this processor
E> Split the set of p 's owned by this processor into "Group I" and "Group

II". (The split is arbitrary except that all groups should be as close as
possible to the same size.)

E> Loop to convergence
E> For all pairs of p and q selected from Group I in this processor,

annihilate Apq a s follows:

Parallel eigensolvers for large processor counts 471

/* Reconstruct elements of A */
apq = Gp. ° V . q

app= p..v.p
aqq =- Gq. ° W.q

/* Note that each processor can compute only part of each
dot product or app, aqq, and apq. Communication across all
processors at each ring position is required to combine the
parts and share the complete dot products across those pro-
cessors. For example,

processors owning p i owned by each processor
,/

/* Compute rotation angle (redundantly on each processor) */
o = (aqq - app)/(Za q)
t = sgn(0)/(i0 [+ sqrt(O 2 + 1))
c = 1/sqrt(t + 1)
S = I c

/* Rotate those portions of G and V residing in this processor */
T=Gp,
Gp. = c T - s G q .
Gq, = s T -Jr c G q .

T= V.p
W.p ~- c T - s W . q

V , q = s T -~- e W , q

- End " fo r all pairs o f p and q selected f rom G r o u p I . . . "
D For all pairs o f p and q selected f rom G r o u p II in this processor,

annihilate Apq a s above.
/* The following section annihilates Apq for all p and q selected from
all different groups on all processors. */
E> For round = 1 . . 2PR - 1

/* Annihilate Apq for all p and q in this processor. */
D If G r o u p I is larger than G r o u p II then

D M = number of p ' s in G r o u p I
D For step = 0 . . M - 1 (sequentially)

D For all q ' s in G r o u p II (in parallel)
~> Select a p f rom G r o u p I so that all pq pairs are

unique, e.g., for qi, select P(i+step) mod M
D Annihilate Apq a s above.

/* For high efficiency, care should be taken to complete
the dot products for all current pq pairs in a single
communication phase. */

- End " fo r all q 's in G r o u p II (in para l le l)"
End " fo r step = 1 . . M - 1 (sequent ia l ly)"

- else Group H is larger or equal
D Per fo rm above loops, switching Groups I and II.

- endif " G r o u p I is larger than G r o u p I I "
/* Scroll data around the ring of processors. */
D If round is even and processor posi t ion within ring = round/2

then send/receive G r o u p II (Le., send Group H to successor
and receive data from predecessor into Group IL)

472 R . J . Littlefield and K. J. Maschhoff

- else
send/receive Group I

- endif
- End "for round = 1 . . 2PR - 1 . . . "
E> Combine convergence data across all processors.

End "loop to convergence"

A2 BFJ timing model

A2.1 Preliminaries. A performance model for the BFJ algorithm can be devel-
oped as follows. In general, we want to predict execution time as a function of
matrix size, number and length of rings, and a small set of machine parameters
that are easy to measure. Our basic strategy is to count operations and add up
their times.

We assume the following:

1. Execution is loosely synchronous - all processors compute and exchange data
at the same time.

2. There is no significant overlap between computat ion and communication.

3. Matrix rows and columns have been distributed to minimize the load
imbalance, i.e., all groups are of size M or M - 1.

4. All communications can progress simultaneously. This corresponds to assum-
ing that either (a) the computation can be mapped to the physical machine so as
to avoid conflicts, or (b) the machine's physical interconnection scheme is fast
enough that conflicts can be ignored.

A2.2 Definitions

• Problem variables and algorithmic parameters:

N matrix dimension
PR number of processors per ring
R number of rings
M maximum columns per group: M = FN/(2PR)7
L maximum length of vector segment: L = I-N/R7
Fo~erheaa fixed computational cost for a single Jacobi rotation, expressed as

an equivalent number of floating point operations. This cost includes
subroutine entry/exit, computing the rotation angle, and so on.

• Basic machine and operating system speeds.

t~op floating point operation time (as measured for the vector operations of
a rotation)

txstartue transfer startup time
txpem,m transfer time per element
tcs,art~p combine startup time (to complete and share dot products)
t~pe~m combine time per element

Combine costs will depend on the number of processors involved. We model
these as

tcstartup(P) = log2p * t~star,up(2)

tcperelem(p) = log2p * tcpem~m(2)

Parallel eigensolvers for large processor counts 473

where p is the number of processors involved and the times on the right are
constants that can be measured easily.

A 2 . 3 Equa t ions . At the highest level, BFJ is modeled as:

t p = tent + (2PR -- 1)t tt + tcollect

where

t p time per sweep
tint time required to perform all Jacobi rotations.
t it time required to transfer row and column groups from one processor to

another.
tcoltect time required to collect convergence status.

Two of these components can be modeled quite simply.

tscroll = {~startup -~ txperelem * (2 M L + 5) , P R > R = 1

tcollec t = tcs tar tup(P) q- tcperelem (P) * 1

The number of 5 in tso.oZ ~ accounts for a small amount of auxiliary data that our
code carries along with the matrix rows and columns.

To model tint, w e rely on the assumption that execution is loosely synchronous,
so that the total time for each round is that of the busiest processor. In some
rounds, the busiest processor will have two groups containing M units (a
"big-big" pairing). In other rounds, big groups will be paired only with "little"
groups containing M - 1 units.

Define the following:

B the number of rounds containing big-big pairings.
C (m) the average cost of a Jacobi rotation in the busiest processor, whose

smaller group is size m:

C (m) = ((18L + Foverhead) * tflo p -~- tcomb(3 , m, R))

tcomb(n , m , r) the average time needed to combine n numbers across r
processors, presuming that m sets of r are done at once.

tcomb (n, m, r) -- tcstar,,p (r) + tcperel~m (r) * n * m
m

Then:

tint = 1 * (M * (M - - l) • C (M - - 1)) +

B • (M * M * C (M)) +

(2P R -- 1 - B) • (M , (M - 1) • C (M - l))

The three lines of this formula account for the rounds that are determined by intra-
group, big-big, and big-little pairings, respectively. This expression simplifies to:

tint = B • (M • M * C (M)) +

(2 P R - B) * (M * (M - 1) * C (M -- 1))

Finally, for the scrolling pattern that we use, the number of big-big rounds is simply

t 0 if K is 1

B = 2 K - 3 i f l < K < ~ P R

[2 P R -- 1 otherwise (K > PR)

