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Summary. Eigensolving (diagonalizing) small dense matrices threatens to become 
a bottleneck in the application of massively parallel computers to electronic struc- 
ture methods. Because the computational cost of electronic structure methods typ- 
ically scales as O(N 3) or worse, even teraflop computer systems with thousands of  
processors will often confront problems with N ~ 10,000. At present, diagonalizing 
an N x N matrix on P processors is not efficient when P is large compared to N. 
The loss of efficiency can make diagonalization a bottleneck on a massively parallel 
computer, even though it is typically a minor operation on conventional serial 
machines. This situation motivates a search for both improved methods and identi- 
fication of the computer characteristics that would be most productive to improve. 

In this paper, we compare the performance of several parallel and serial 
methods for solving dense real symmetric eigensystems on a distributed memory 
message passing parallel computer. We focus on matrices of size N = 200 and 
processor counts P = 1 to P = 512, with execution on the Intel Touchstone DELTA 
computer. The best eigensolver method is found to depend on the number of 
available processors. Of the methods tested, a recently developed Blocked Factored 
Jacobi (BFJ) method is the slowest for small P, but the fastest for large P. Its speed 
is a complicated non-monotonic function of the number of processors used. A 
detailed performance analysis of the BFJ method shows that: (1) the factor most 
responsible for limited speedup is communication startup cost; (2) with current 
communication costs, the maximum achievable parallel speedup is modest (one 
order of magnitude) compared to the best serial method; and (3) the fastest solution 
is often achieved by using less than the maximum number of available processors. 
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1 Introduction 

Many electronic structure methods require obtaining the eigenvalues and eigen- 
vectors of a dense real symmetric N x N matrix, a process called eigensolving or 

* Pacific Northwest Laboratory is operated for the U.S. Department of Energy (DOE) by Battelle 
Memorial Institute under contract DE-AC06-76RLO 1830 
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diagonalization.  N ,  the number of basis functions, is typically a few hundred in 
current applications. 

On conventional computers, diagonalizing these dense matrices usually is not 
a bottleneck. On such machines, the time required for eigensolving is O(N3). 1 
Other parts of the calculation, such as constructing the matrix, can vary from 
O(N 2) to O(N4), depending on the chemical system and electronic structure 
method. However, the coefficient for those parts is large enough that eigensolv- 
ing typically comprises a small fraction of the total computational cost. 

Massively parallel computing threatens to change this situation. It is easy to 
see how to apply large numbers of processors to such work as constructing the 
matrix, which consists of many independent calculations. Indeed, it seems 
plausible that the time-to-completion for those tasks could be held virtually 
constant by simply increasing P in proportion to the amount of work. Unfortu- 
nately, it is not so easy to apply large numbers of processors to eigensolving small 
dense matrices. Most parallel eigensolver methods are limited to P ~< N and, as 
shown later, can lose efficiency quickly even for much smaller P. Thus, if P is large 
compared to N, eigensolving can become a bottleneck for a computation done in 
parallel, even though it would not be for the same computation done serially. 

This would be acceptable if P ~ N were expected to be the normal situation, 
but this is not the case. Because total computational cost increases quickly, N 
will be limited even for teraflop machines (1012 floating point operations per 
second). At present, problems with N of a few hundred are often reserved for 
computers rated at perhaps 108 operations per second. Assuming O(N 3) scaling, 
this suggests that teraflop machines will often confront problems with 
N < 10,000 (i.e., a factor of  10 4/3 larger). Much smaller N may occur for some 
classes of problems. For  example, hybrid molecular dynamics methods have been 
proposed in which quantum methods would be used only for small critical 
portions of the chemical system. Such methods might compute a long series of 
time steps, limiting N to a few hundred in order to make the calculation feasible 
even on a teraflop machine. There are supercomputer-class parallel systems with 
more than 500 processors today, and teraflop computers with more than 10,000 
processors surely will be available in a few years. Thus, it seems likely that P > N 
will be a common case with massively parallel computers. 

This situation motivates a search for parallel eigensolvers that can exploit 
large numbers of processors to reduce time-to-completion. Although linear 
speedup (proportional to P) would be desirable, the eigensolving bottleneck 
sometimes can be avoided by more modest improvements. Suppose, for example, 
that one attempts to apply 500 processors to a problem that is 99.5% perfectly 
parallelizable work, plus 0.5% eigensolving. Then Amdahl's law: 

T~eriat + Tparotle/ 
Speedup = 

Tparallel 
T~eriat + - -  

P 
implies that the speedup will be only 143 if the eigensolving is done serially. How- 
ever, if the eigensolving were parallelized so as to run 10 times faster than the 

1 We use "Big-O" order notation in the formal sense: a computation has cost O(f(N)) if and only 
if there exists some constant c and some minimum problem size N o such that for all N > No, 
cost(N) <~ c ' f  (N). This notation gives some indication of how the cost varies with problem size, but 
says nothing about absolute cost. The coefficients may very well be such that an O(N 2) algorithm is 
faster than some O(N log N) algorithm for all N of practical interest 
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serial version, then the overall speedup would increase to over 400• If more 
processors were available, correspondingly higher speedup would be required 
from the eigensolver to achieve the same gain. 

In this paper, we explore some aspects of parallel eigensolvers in the regime 
where P is slightly larger than N. The algorithms and codes that we consider are 
all designed for a distributed memory MIMD (Multiple Instruction, Multiple 
Data) computer programmed with explicit message passing. Our goals are to 
determine how much the time-to-completion is reduced by parallel computation, 
what factors limit that reduction, and which method(s) perform best under 
various conditions. This study is not intended to be definitive, but rather to 
support our long-term goal of developing improved methods to avoid the 
eigensolver bottleneck. 

The paper is organized as follows. Section 2 describes several approaches to 
parallel eigensolving, laying groundwork for understanding the behavior shown 
later. Section 3 discusses the results of empirical tests comparing the performance 
of five serial and four parallel methods, over a range of matrix types and 
processor counts. In these tests, a newly developed Blocked Factored Jacobi 
(BFJ) method was the fastest method for large P. In Sect. 4, the BFJ method is 
analyzed in detail using a theoretical performance model to determine what 
factors limit its performance. Conclusions and suggested directions for further 
work are found in Sect. 5. For completeness, the BFJ algorithm and performance 
model are detailed in the Appendix. 

2 Parallel eigensolver methods 

Many numerical methods for solving dense real symmetric eigensystems are in 
common use [5, 10], and most of them can be parallelized to some extent• We 
will outline only the methods and parallelization strategies considered in this 
paper• 

Jacobi methods operate on the dense matrix using the Jacobi iteration: 

A (k + l) r T a  (k)r = V r A  (o) Vk 
- ~  O k X ~  o k 

where Jk is a plane rotation matrix chosen to annihilate one off-diagonal element 
of A (k). When performed in a series of sweeps addressing all N ( N -  1)/2 
off-diagonal elements, this iteration converges with the eigenvalues appearing 
along the diagonal of A and the corresponding eigenvectors appearing as the 
columns of V. 

Due to the special form of J~, Jacobi methods can be distributed efficiently 
by factoring A k into two matrices, one of which is grouped by columns and the 
other by rows: 

A ( k +  l) T 0 = V k A  V k =  

• ' '  r 1 . ' '  

• . . r 2 • . . 

• . . r n • . . 

Y 

G k = V 2 A  ° 

Eil 
v~ 

Using this factored form, the rotation to annihilate apq works only with data 
contained in rows p and q of a matrix G k (which is conceptually V r A  °) and 
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columns p and q of V. To distribute the computation, disjoint groups of rows 
and columns are assigned to several processors. Each processor does all rotations 
for the data it owns, then the data are shuffled so as to bring new groups 
together, and so on, until all the rotations in a sweep have been completed. 
Essentially, a round-robin tournament is held, in which every unique (p, q) pair 
is formed exactly once per sweep. There are several simple and efficient shuffling 
scheme s that generate all of the required pairs in the minimum number of rounds 
using only nearest neighbor communications on a ring topology [3, 4]. 

This basic algorithm, commonly called "one-sided Jacobi" [3], can be 
extended to use a blocked decomposition of the matrix across multiple rings, 
leading to the Blocked Factored Jacobi (BFJ) method outlined by Littlefield and 
Maschhoff [8] and detailed in the Appendix of this paper. Blocking is required 
to exploit P > N/2, but due to tradeoffs in load balance and communication 
costs, blocking often turns out to be superior even when P is substantially less 
than N/2 [8]. 

Compared to serial Jacobi methods, parallel Jacobi suffers mainly from 
communication costs and a reduced ability to exploit skipped rotations. In a 
serial Jacobi method, much work can be saved by skipping rotations for 
off-diagonal elements that are already near zero. This typically increases the 
number of iterations needed for convergence, but reduces the total computation 
cost. In parallel Jacobi methods, skipping rotations does not reduce the time-to- 
completion unless rotations can be skipped in all processors in the same step of 
the ring transfer. As the processor count increases, this becomes increasingly 
unlikely; in the limit of large P, the value of skipping rotations tends to zero. 

Our tests included three Jacobi methods-  two serial and one parallel. The 
two serial methods are quite similar except for their eagerness to skip rotations. 
The parallel method (BFJ) does not skip rotations at all, even with small P. 

Most non-Jacobi methods start by reducing the dense matrix to tridiagonal 
form using a sequence of Householder transformations, each of which zeroes one 
column below the subdiagonal. This reduction does not parallelize perfectly. 
Although each transformation can be applied to the remainder of the matrix in 
parallel, the transformations must be determined in sequence and sent to all 
processors. With large P, the reduction step potentially suffers from load 
imbalance and high communication costs. 

After tridiagonal form is obtained, there are several methods for extracting 
eigenvalues and eigenvectors. One method, used by the EISPACK RSP routine, 
is to use implicit-shift QL iteration to simultaneously find the eigenvalues and 
eigenvectors. A simple approach to parallelizing this method, used by the codes 
that we call PRS, is to duplicate the eigenvalue part of the computation on all 
processors, while simultaneously computing only a few of the components of 
each eigenvector on each processor. Because the eigenvalue part of the computa- 
tion remains essentially serial, this approach results in only partial paralleliza- 
tion. This does not affect the computational complexity, since the eigenvalue 
computation is only O(N:), while the eigenvector computation is O(N 3) serial 
but O(N 2) parallel. However, it may increase the absolute time-to-completion. 

Another general approach is to find all the eigenvalues first, then use those 
to compute the eigenvectors. In EISCUBE, eigenvalues are found by bisection 
using the Sturm sequence, while eigenvectors are determined by perfect-shift QL 
iteration; both steps are parallelized. Alternately, the eigenvalues may be found 
by implicit QL iteration (which does not parallelize), or the eigenvectors by 
inverse iteration (which does). The fastest serial solver that we tested (GIVEIS) 
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uses implicit QL followed by inverse iteration. We do not yet have a parallel 
method using inverse iteration. This is an obvious shortcoming of our current 
tests, since the combination of bisection and inverse iteration has been found to 
be the fastest method for solving symmetric tridiagonal matrices under some 
circumstances [6, 7]. 

All of the non-Jacobi parallel methods that we tested are limited to P 4 iV, 
giving a parallel cost of O(N2). In contrast, the BFJ method can exploit P > N, 
and has an asymptotic parallel cost of O(N log 2 N) using cN2/log N processors. 
(The optimum coefficient c depends on the ratio of computation and communi- 
cation startup speeds.) 

In the limit of very large N, and given as many processors as each method could 
exploit, these cost orders indicate that the BFJ method would be faster. However, 
Jacobi methods, including the BFJ method, are typically several times slower than 
the competition on serial machines. To overcome this initial penalty, the BFJ 
method would have to scale much better than the other parallel methods, and it 
was not obvious a priori whether this would occur for problems of practical size. 

3 Empirical results 

To investigate some of the issues raised in the preceding discussion, we bench- 
marked several eigensolvers, using a variety of matrix types and processor counts. 
Table 1 outlines the solvers that we tested, and Figs. 1 and 2 show timings. 

All of the solvers were coded in Fortran, except that PRS v.0 and PRS v.1 
were coded in C. All used either naive Fortran BLAS 2 or the equivalent inline 
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Fig. I. Execution time for solving a 200 x 200 matrix on the Intel Touchstone D E L T A  computer,  
using either P = 1 or the P that produced the shortest time for a particular solver 

2 Basic Linear Algebra Subroutines, obtained from netlib@ornl.gov 



462 R.J. Littlefield and K. J. Maschhoff 

50 

20 

8 10 
g 

s 

u BFJ ] 
" s . , . .  zx EISCUBE / 

o PRSll J . +  

i i h i I i i l l  i i i i t 

1 2 4 6 8 12 34 50 100 200 400 

Processors Used 

Fig. 2. Execution time for 
solving a 200 x 200 matrix, 
diagonally dominant by 103 
("Type 2"), as a function of 
the number of processors used 

Table 1. Solvers tested in this study 

Name Parallel (P) Source; Description 
or serial (S) 

BFJ P 
NR Jacobi S 
GAMESS Jacobi S 

EISCUBE P 

RSP S 

PRS v.0 P 

PRS v. 1 P 

GIVEIS S 

Written at PNL; Blocked Factored Jacobi. 
Numerical Recipes [10]; conventional Jacobi. 
Extracted from the GAMESS-UK program; 
conventional Jacobi with aggressive skipping of 
rotations. 
Supplied by Intel, modified for portability; 
reduction, bisection, perfect-shift QL, all parallelized. 
EISPACK (netlib); reduction, implicit-shift QL 
for eigenvalues and vectors simultaneously. 
See acknowledgements; parallel reduction, serial 
implicit-shift QL for eigenvalues, with parallel 
construction of eigenvectors. 
See acknowledgements; same basic method as 
PRS v.0, see text for differences. 
Extracted from the TURBOMOLE program; 
reduction, implicit-shift QL for eigenvalues, inverse 
iteration for vectors. 

code. All communica t ions  were done using synchronous  message passing primi- 
tives (send/receive) provided by the operat ing system. Except for PRS v.0 (see 
below), all global communicat ions  were done using a binary tree strategy with 
cost O(log P). Convergence criteria were set so that  all solvers produced similar 
accuracy. All o f  the parallel solvers terminate with their results distributed in 
some fashion, and the reported times do not  include any reorganizing of  the 
results. (Such reorganizat ion would require only a small fraction o f  the eigen- 
solving time. We omitted it to avoid dealing with application-specific details.) 
Because o f  these uniform conditions, we believe that the timing results are 
comparable  between codes. 

Two fundamental ly  different types of  matrices were used for testing. The 
first type was constructed of  uniform (0, 1) r andom numbers,  then made 
diagonally dominant  by dividing the off-diagonal elements by an appropriate  
constant  (1, 103, 106). The second type was constructed o f  full-bandwidth Nesbet  
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matrices, 3 with the 7 parameter set to either 0.01 or 0.001. Both methods generate 
matrices whose eigenvalues are almost always well separated. 

Testing was done on the Intel Touchstone DELTA 4 computer [2]. The 
DELTA computer consists of 520 nodes, each containing an i860 processor chip 
and 16 megabytes of memory. The processors are interconnected with cut-through 
routing on a 2-D mesh. The DELTA differs from an Intel iPSC/860 T M  [1] 
primarily in having more processors and higher node-node bandwidth. (Absolute 
performance numbers are discussed in Sect. 4.) 

PRS v.0 and PRS v. 1 require more explanation than appears in Table 1. These 
codes are based on a partial parallelization of the EISPACK RSP method, as 
outlined in the previous section: parallel reduction, serial solution for eigenvalues, 
and parallel accumulation of vectors. There are two important differences between 
these codes. First, v.0 implements global communications using a simple one-to- 
many serial scheme, while v. 1 uses a more sophisticated binary tree approach. 
Second, v.1 uses external BLAS, while v.0 uses inline code. 

Results are shown in Figs. 1 and 2. All of the results shown were done with 
N = 200. This value is typical of current problems, and is small enough to allow 
P modestly greater than N. Parallel codes were tested with a variety of  processor 
counts, P = 1 to P = 400. 

Figure 1 summarizes all the performance test results. It displays times for the 
serial solvers, plus times for parallel solvers at P = 1 and at whatever "opt imum" 
P produced the minimum execution time. Several interesting features are appar- 
ent: 

• BFJ is the fastest parallel solver for most matrix types, but is always the slowest 
serial one. 

• All of the parallel solvers are faster than any serial solver, but none of the 
parallel solvers is more than 10 times faster than the best serial one (GIVEIS). 

• All of  the Jacobi methods improve in proportion to the degree of diagonal 
dominance. In the remainder of this paper, we focus on "type 2" matrices 
(diagonally dominant by a factor of 103), as representative of what might be 
found in practice in highly iterative applications, where good eigenvector 
approximations are available to use for preconditioning the matrix. 

Figure 2 shows the speedup curves for the parallel solvers. Again, several 
interesting features are apparent: 

• PRS v.0 scales well out to about 12 processors, then begins to suffer from its 
O(P) serial broadcast scheme. Beyond 14 processors, PRS v.0 gets dramatically 
slower. 

• PRS v.1 and EISCUBE, which use O(log P) global operations, do not suffer 
much beyond 50 processors. However, they too achieve their minima at around 
P = 50, and get slightly slower after that. 

• BFJ improves out to P = 400, crossing under the EISCUBE and PRS v.1 curves 
at slightly over P = 50. (Beyond P = 400, BFJ would turn up also; see Sect. 4.) 

3 M~ - 1 + 7(2i -- 1)a(i,j) 
4 Intel Supercomputer Systems Division, Intel Corporation, Beaverton, Oregon. The Touchstone 
D E L T A  computer  is a result of  specially directed efforts in support  of  the Concurrent  Supercomput- 
ing Consort ium, and is not marketed by Intel. "r~a Intel Corporation 
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It has long been conjectured that Jacobi methods might be faster than other 
methods for sufficiently large processor counts [3]. The data reported here 
provide the first empirical support for that position, suggesting that the BFJ 
method is in fact a competitive algorithm when, for example, P > N/4 and N is 
relatively small. 

This conclusion must be tempered, however, by the observation that we have 
not yet attempted to adapt the non-Jacobi methods for the large-P regime. In the 
case of Jacobi methods, detailed performance modeling led directly to the 
creation of the BFJ method, making it possible to exploit P > N/2 processors. 
The same effort also provided a method for optimizing BFJ's use of available 
processors, producing an average 30% performance improvement in some useful 
regimes [8]. We are hopeful that further study of the non-Jacobi methods will 
yield similar benefits, and it would not be surprising for the BFJ method to be 
overtaken by an improved non-Jacobi method. At present, both EISCUBE and 
PRS v.1 take slightly more time to reduce the matrix to tridiagonal form than 
BFJ does to completely solve the system. However, there are several potential 
improvements in the reduction that we have yet to evaluate. 

Several other points are more clear: 

• As shown in Fig. 1, the parallel speedup of small dense eigensolvers will be 
modest for matrices of this size, unless there are changes in the methods and/or 
computer systems. This point is investigated further in the next section. 

• As shown by PRS v.0 and PRS v. 1 in Fig. 2, performance with large P cannot 
be predicted solely from performance with small P. The nature of the underlying 
algorithm must be considered, and an appropriate performance model used. 

• As shown by the behavior of the BFJ method, the large-P and small-P regimes 
should be considered separately-  different algorithms may be preferred in 
each regime. 

4 Performance analysis of the BFJ method 

In the previous section, we showed empirically that the BFJ method is competi- 
tive with other methods in the large-P regime. We now use a detailed perfor- 
mance model of BFJ to address several questions: 

1. What floating point and communication speeds is the BJF method actually 
getting out of the current computer? 

2. What limits the performance of the BFJ method? 

3. How fast could the BFJ method run, given an unlimited number of processors 
with some specified characteristics? 

Note that the answers we get, strictly speaking, will apply only to the 
particular implementation of the BFJ method that we analyze. There is no 
guarantee that the bottlenecks for the BFJ method are the same as those for PRS 
v.1. Nonetheless, we hope that a detailed analysis of one eigensolver will yield 
some valuable insight about parallel computing, as well as providing a model for 
analyzing other methods. 

The BFJ algorithm and a performance model for it are described in detail in 
the Appendix. Briefly, the BJF method distributes rows and columns of two 
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Fig. 3. Predicted and observed 
execution time for solving a 
200 x 200 "Type 2" matrix 
using the BFJ method, as a 
function of the number of 
processors used 

matrices across a ring of processors (multiple rings, in general), then alternately 
operates on local data and scrolls the data around the ring. This algorithm 
exhibits "stairstep" speedup (see Fig. 3) because its execution time is largely 
proportional  to both the ring length and the maximum number of  matrix rows 
and column assigned to any processor. Adding processors (increasing the ring 
length) actually makes the algorithm run slower, until enough processors have 
been added to reduce the amount  of  data in each one. Thus the BJF method 
should be run only with processor counts at the bot tom of a step. (The processor 
counts in Fig. 1 were chosen by this rule to avoid stairstep artifacts.) 

The performance of the BFJ method can be modeled well by assuming that 
computat ion and communication happen in lockstep, and then calculating the 
time consumed by the busiest processor at each step. This process yields a 
closed-form analytic expression for the execution time in terms of six parameters 
that are closely tied to basic machine speeds, application code design, and 
compiler quality: 

1. Foverhead is the fixed computational cost for a single annihilation, expressed as 
an equivalent number of  floating point operations. This cost includes subroutine 
entry/exit, computing the rotation angle, and so on. 

2. t~op is the floating point operation time (as measured for the per-element 
operations of  the BLAS functions). 

3. txstartup is the transfer startup time. 

4. txperetem is the transfer time per element. 

5. tc~.,ar,,p is the combine startup time (to "combine" means to sum values across 
several processors). 

6. t~e~e~m is the combine time per element. 

These parameters can be measured fairly easily with testjig programs, and 
their accuracy can be checked by comparing predicted performance with that 
measured for the eigensolver. 5 For the DELTA,  we measured the following 

5 Significant discrepancies indicate that either the model is incorrect or that the testjig and actual 
codes are somehow behaving differently. In early testing, we found factor of 5 discrepancy in one 
parameter (txs,ar,,p). This discrepancy was traced to an anomaly in the message-passing primitives. A 
workaround was developed, and the computer development team was notified. 
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values: 

t~op 0.122 #sec (8.2 MFLOPS) 

tx~tartup 153 #sec 

txperelem 1.66/~sec (4.8 MB/sec/link = 0.6 MB/sec/node) 

tcsta~tup 210 #sec 

tcperelem 2.78/~sec 

foverhead 265 

Figure 3 shows that using these parameter values in the performance model 
predicts the behavior of the BFJ method quite closely. Since this accuracy results 
from analyzing the algorithm, rather than from coincidentally fitting some 
standard function, we can be fairly confident about interpreting the numbers. 

Each of the parameter values implies something about how well the BFJ 
method is using the machine. First, 8.2 MFLOPS for the BLAS calculations 
suggests that the Fortran compiler has done a fairly good job in this case - the 
BFJ method can use only Level 1 BLAS (vector-vector) and tends to overflow 
cache memory. For  the computations done by the BFJ method, this is a 
situation in which the i860 would be hard-pressed to exceed 18 MFLOPS 
because of memory bottlenecks [9]. Second, a transfer startup time of 153 #sec 
suggests that only small improvements in startup time could be achieved by 
recoding the application - the best time to date by an optimized testjig code for 
a similar type of transfer is around l l0#sec.  Third, the 9.6 MB/sec/node 
indicates that we are using the communication links reasonably efficiently- at 
the time these benchmarks were run, optimized testjig codes could achieve only 
slightly over 12 MB/sec/node. Fourth, the computational overhead cost of 265 
indicates that the i860 handles straight-line code, subroutine calls, divide, and/ 
or sqrt functions relatively less efficiently than other machines that we have 
tested. For example, the equivalent computational overhead cost for an 
NCUBE/ten TM6 computer was only 48. This is not surprising since (1) the i860 
architecture and compilers tend to reward loops that can be pipelined, and (2) 
the i860 computes sqrt in software, while the NCUBE does it with hardware. 
However, it is important to be aware of these differences-  at one point, an 
inappropriate choice of compiler switches 7 caused the computational overhead 
cost to increase to 797 and significantly changed the relative performance of 
EISCUBE, PRS, and EISPACK RSP. 

There are two ways to address the question of which characteristic limits the 
performance of the BFJ method. Viewed in isolation, the performance model 
says that execution time is a linear function of each parameter. Thus, it is 
tempting to look at the marginal effects, that is, ~Time/~Parameteri. 

In the broader view, however, the performance of the BFJ method  is actually 
a nonlinear function of the parameters because the algorithm allows more 
processors to be exploited, or the same number of processors to be used in 

6 XM NCUBE/ten is a trademark of NCUBE, Beaverton, Oregon 
7 We omitted the -Knoieee flag, an oversight that caused the i860 to work very hard preserving the 
last two bits in a 64-bit number for divide and sqrt 
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Table 2. Predicted effect of improving each performance parameter 

467 

Improvement 

t~startup txperelem foverhead Optimum P Relative time 

400 1.00 
2X 400 0.98 

2X 400 0.89 
2X 2X 400 0.87 

2X 800 0.65 
2X 2X 800 0.63 
2X 2X 800 0.58 
2X 2X 2X 800 0.56 

10X 2X 2X 2900 0.20 

different ways, depending on the relative values of  various parameters. For  
example, as startup cost drops, it may be productive to add more rings, or to 
shift f rom one long ring to several short ones. Because of these nonlinear effects, 
it is more meaningful to hypothesize substantial changes in the parameters and 
look at the performance that could be achieved after re-optimizing the number 
and usage of processors. 

Table 2 shows the predicted effect of  improving three of  the performance 
parameters and assuming that an unlimited number of  processors is available. 
(We have left t~qop fixed, since it establishes the single-processor speed against 
which comparisons should be done.) The information in this Table reveals that: 

• Communicat ion startup time is the most  important  parameter. 

• Reducing communication startup time would allow exploiting more processors. 

• Given the current communication startup time, the opt imum number of  
processors is only P = 400 (for a 200 x 200 matrix). Even if more processors 
were available, attempting to use larger P would make BFJ run slower. 

From one perspective, these are disappointing results, since little improve- 
ment can be made in the startup time by modifying the BFJ method at the 
application program level. However, the observed startup time is two orders of  
magnitude larger than the hardware latency, indicating that most of  the time is 
due to software processing. We are hopeful that significant improvements might 
be accomplished by changes in the computer operating system, and we are 
pursuing this possibility with the vendor. 

5 Conclusions 

The most important  points from this work are that: 

• P > N is expected to be a common case for electronic structure calculations on 
massively parallel computers. 

• Eigensolving is more likely to be a bottleneck with massively parallel comput-  
ers than with serial or modestly parallel computers, where P ~ N. 



468 R.J. Littlefield and K. J. Maschhoff 

• The m a x i m u m  speedup for  solving small  dense eigensystems is modes t  at  
present  ( a b o u t  10 t imes for  N = 200 in our  tests). M a x i m u m  speedup depends  
on the relat ive speeds o f  communica t i on  and  computa t ion .  

• Every me thod  in our  tests ran  the fastest  using less than  the m a x i m u m  
avai lable  number  o f  processors .  

• Different  a lgor i thms m a y  be required for  large-scale para l le l i sm (e.g., P ~ N or  
larger) than  with modes t  para l le l i sm (P  ~ N)  - the fastest  paral le l  solver in our  
tests (BFJ)  is also the slowest serial method .  

• C o m m u n i c a t i o n  s ta r tup  is the single mos t  i m p o r t a n t  l imit ing fac tor  for  the 
BFJ  method .  

The current  results are  not  sufficient to conclude which me thods  will ulti-  
mate ly  prove  best. F u r t h e r  s tudy is required to de termine  why the non-Jacob i  
me thods  do  not  scale well into the massively para l le l  regime, and  what  can be 
done  to improve  their  per formance .  M o r e  prac t ica l  experience will also be 
required to de termine  the pe r fo rmance  impacts  o f  such issues as solving for  only  
some o f  the eigenvectors  and  main ta in ing  high accuracy and o r thogona l i ty  in the 
presence of  degenera te  eigenvalues.  
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A I BFJ algorithm 

The BFJ method, like other "one-sided" Jacobi eigensolvers, is based on the 
same mathematics as the classic Jacobi method, namely: 

A(K+ 1) _ rrn(k)r  v r n  (0) v - -OkZX a k ~ r k . ~ a  v k 

The classic method stores and updates the A matrix to obtain eigenvalues. 
The V matrix is stored and updated only if eigenvectors are required. In contrast, 
the BFJ method stores and updates a new matrix G defined as G k=  vTa(0) - - k  -'1 , SO 

that A k =  GkVk. The V matrix is always stored and updated. When they are 
needed to compute rotations, elements of A are reconstructed via dot-products of 
individual rows of G and columns of V. 

Ignoring parallelism and distribution of  data, the BFJ algorithm for a real 
symmetric matrix can be outlined as follows: 

Algorithm I (Non-distributed BFJ) 
~> Initialize G = A and V = I (n × n identity matrix) 
E> Loop until convergence 

D For  each off-diagonal element pq, annihilate A m as follows: 
/* Reconstruct elements of A needed to determine the rotation */ 

a p q = G p * * V . q ~ 2 n = l a p i V i q  
app = Gp . v 

aqq = Gq. • V,q 
/* Compute rotation angle */ 

0 = (aqq -- avp)/(2apq ) 
t = sgn(0)/(~0[ + sqrt(02+ 1)) 
c = 1/sqrt(t2+ 1) 
s = l c  

/* Rotate rows of G and columns of V */ 
T=Gp. 
Gp. = cT  -- sGq,  
Gq. = s T  + CGq, 
T= V,p 
V,p = eT - s V . q  

Vq = sT + c V ,  q 

End "for each off-diagonal element pq" 
- End "loop until convergence" 

The algorithm terminates with V being a matrix whose columns are eigenvectors. 
The corresponding eigenvalues can be retrieved as ei = Gi. ° V.e. 

Convergence is tested by examining the magnitude of the off-diagonal 
elements. For  the work reported here, we used simply max(lapq I) < 10-14 (before 
rotation). The development of a convergence test that is both efficient and 
accurate under all circumstances is beyond the scope of this paper. However, it 
is important to note that one-sided eigensolvers, including BFJ, are qualitatively 
different from the classic Jacobi method with respect to convergence. In the 
classic Jacobi method, the A matrix is stored explicitly and the off-diagonals can 
be driven arbitrarily close to zero by continued iteration. In one-sided methods, 
the off-diagonals are computed as dot-products, so that floating point roundoff 
errors bound their magnitude away from zero. 
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Ring Position 1 2 3 

Even transfe?"~ ~ i ~ : ' t ; ~  ~]LJ  ' ' ' "  ~ J ~  ' A l l  other 
at designated Transfer #2 Transfer #4 transfers 
ring position 

Fig. 4. Scrolling pattern for 3 processors 
organized in 1 ring. Each vertical line 
represents a unit consisting of a row of 
G and the corresponding column of V. 
Each processor holds 2 groups of units, 
called "Group I" and "Group II". In 
this example, N = 15; there are 3 groups 
containing 3 units and 3 groups con- 
taining 2 units 

1 
2 

Group 3 
Number 4 

5 
6 

Ring Number Group Number 
1 2 3 4 1 2 3 4 5 6  

G=vTA V 

1 

2 Fig. 5. Matrix distribution for 12 processors 
3 organized in 4 rings of 3 processors each. 

Each unit is spread across 4 processors at 
4 whatever ring position holds its group 

Transfers of 
matrix blocks 

I I ~  I ~ Completion Fig. 6. Communication pattern 
~ and sharing of for 12 processors organized in 

dot-products 4 rings 

Many refinements are possible in this algorithm, such as avoiding the dot- 
products for app and aqq by explicitly storing and updating the diagonals, or 
reducing the operation count by using "fast rotations" to update G and V. 
However, the code that was tested for this paper, and the performance model 
described below, did not incorporate such refinements. 

To parallelize the BFJ computation, the G and V matrices are distributed 
such that each processor holds Gp~ and V~p for at least two different p 's  and a 
range of i's. Inner loops are then added to process all off-diagonal elements by 
scrolling the data around a ring of PR processors. The data distribution and 
scrolling are illustrated in Figs. 4, 5, and 6. Then each processor executes a 
program outlined as follows: 

Algorithm 2 (Distributed BFJ) 
E> Initialize Gpi and Vip for all i and p assigned to this processor 
E> Split the set of p 's  owned by this processor into "Group I" and "Group 

II". (The split is arbitrary except that all groups should be as close as 
possible to the same size.) 

E> Loop to convergence 
E> For all pairs of p and q selected from Group I in this processor, 

annihilate Apq a s  follows: 



Parallel eigensolvers for large processor counts 471 

/* Reconstruct elements of A */ 
apq = Gp.  ° V . q  

app= p..v.p 
aqq =- Gq.  ° W.q 

/* Note that each processor can compute only part of each 
dot product or app, aqq, and apq. Communication across all 
processors at each ring position is required to combine the 
parts and share the complete dot products across those pro- 
cessors. For example, 

processors owning p i owned by each processor 
,/ 

/* Compute rotation angle (redundantly on each processor) */ 
o = (aqq - app)/(Za q) 
t = sgn(0)/(i0 [ + sqrt(O 2 + 1)) 
c = 1/sqrt(t + 1) 
S = I c  

/* Rotate those portions of G and V residing in this processor */ 
T=Gp, 
Gp.  = c T - s G q .  
Gq,  = s T  -Jr c G q .  

T= V.p 
W.p ~- c T  - s W . q  

V , q  = s T  -~- e W ,  q 

- End " fo r  all pairs o f  p and q selected f rom G r o u p  I . . . "  
D For  all pairs o f  p and q selected f rom G r o u p  II  in this processor,  

annihilate Apq a s  above.  
/* The following section annihilates Apq for all p and q selected from 
all different groups on all processors. */ 
E> For  round  = 1 . .  2PR - 1 

/* Annihilate Apq for all p and q in this processor. */ 
D If  G r o u p  I is larger than  G r o u p  II  then 

D M = number  of  p ' s  in G r o u p  I 
D For  step = 0 . .  M - 1 (sequentially) 

D For  all q ' s  in G r o u p  II  (in parallel) 
~> Select a p f rom G r o u p  I so that  all pq pairs are 

unique, e.g., for qi, select P(i+step) mod M 
D Annihilate Apq a s  above.  

/* For high efficiency, care should be taken to complete 
the dot products for all current pq pairs in a single 
communication phase. */ 

- End " fo r  all q 's  in G r o u p  II  (in para l le l )"  
End " fo r  step = 1 . .  M - 1 (sequent ia l ly)"  

- else Group H is larger or equal 
D Per fo rm above  loops, switching Groups  I and II. 

- endif  " G r o u p  I is larger than  G r o u p  I I "  
/* Scroll data around the ring of processors. */ 
D If  round  is even and processor  posi t ion within ring = round/2  

then send/receive G r o u p  II  (Le., send Group H to successor 
and receive data from predecessor into Group IL) 
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- else 
send/receive Group I 

- endif 
- End "for round = 1 . .  2PR - 1 . . . "  
E> Combine convergence data across all processors. 

End "loop to convergence" 

A2 BFJ timing model 

A2.1 Preliminaries. A performance model for the BFJ algorithm can be devel- 
oped as follows. In general, we want to predict execution time as a function of 
matrix size, number and length of rings, and a small set of  machine parameters 
that are easy to measure. Our basic strategy is to count operations and add up 
their times. 

We assume the following: 

1. Execution is loosely synchronous - all processors compute and exchange data 
at the same time. 

2. There is no significant overlap between computat ion and communication. 

3. Matrix rows and columns have been distributed to minimize the load 
imbalance, i.e., all groups are of  size M or M - 1. 

4. All communications can progress simultaneously. This corresponds to assum- 
ing that either (a) the computation can be mapped to the physical machine so as 
to avoid conflicts, or (b) the machine's physical interconnection scheme is fast 
enough that conflicts can be ignored. 

A2.2 Definitions 

• Problem variables and algorithmic parameters: 

N matrix dimension 
PR number of  processors per ring 
R number of  rings 
M maximum columns per group: M = FN/(2PR)7 
L maximum length of vector segment: L = I-N/R7 
Fo~erheaa fixed computational  cost for a single Jacobi rotation, expressed as 

an equivalent number of  floating point operations. This cost includes 
subroutine entry/exit, computing the rotation angle, and so on. 

• Basic machine and operating system speeds. 

t~op floating point operation time (as measured for the vector operations of  
a rotation) 

txstartue transfer startup time 
txpem,m transfer time per element 
tcs,art~p combine startup time (to complete and share dot products) 
t~pe~m combine time per element 

Combine costs will depend on the number of  processors involved. We model 
these as 

tcstartup(P ) = log2p * t~star,up(2) 

tcperelem(p) = log2p * tcpem~m(2) 
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where p is the number of processors involved and the times on the right are 
constants that can be measured easily. 

A 2 . 3  Equa t ions .  At the highest level, BFJ is modeled as: 

t . . . .  p = tent + (2PR -- 1)t . . . .  tt + tcollect 

where 

t . . . .  p time per sweep 
tint time required to perform all Jacobi rotations. 
t . . . .  it time required to transfer row and column groups from one processor to 

another. 
tcoltect time required to collect convergence status. 

Two of these components can be modeled quite simply. 

tscroll = {~startup -~ txperelem * ( 2 M L + 5 ) ,  P R > R = 1 

tcollec t = tcs tar tup(P ) q-  tcperelem (P)  * 1 

The number of 5 in tso.oZ ~ accounts for a small amount of auxiliary data that our 
code carries along with the matrix rows and columns. 

To model tint, w e  rely on the assumption that execution is loosely synchronous, 
so that the total time for each round is that of the busiest processor. In some 
rounds, the busiest processor will have two groups containing M units (a 
"big-big" pairing). In other rounds, big groups will be paired only with "little" 
groups containing M -  1 units. 

Define the following: 

B the number of rounds containing big-big pairings. 
C ( m )  the average cost of a Jacobi rotation in the busiest processor, whose 

smaller group is size m: 

C ( m )  = ((18L + Foverhead ) * tflo p -~- tcomb(3 , m,  R) )  

tcomb(n , m ,  r)  the average time needed to combine n numbers across r 
processors, presuming that m sets of r are done at once. 

tcomb (n, m,  r) -- tcstar,,p (r) + tcperel~m (r) * n * m 
m 

Then: 

tint = 1 * ( M  * ( M  - -  l )  • C ( M  - -  1)) + 

B • ( M  * M * C ( M ) )  + 

(2P R -- 1 - B )  • ( M ,  ( M -  1) • C ( M -  l)) 

The three lines of this formula account for the rounds that are determined by intra- 
group, big-big, and big-little pairings, respectively. This expression simplifies to: 

tint = B • ( M  • M * C ( M ) )  + 

( 2 P  R - B )  * ( M  * ( M  - 1) * C ( M  --  1)) 

Finally, for the scrolling pattern that we use, the number of big-big rounds is simply 

t 0 if K is 1 

B =  2 K - 3  i f l < K < ~ P R  

[ 2 P  R -- 1 otherwise (K > PR) 


